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A B S T R A C T   

Pearl millet can be viably used for food diversification due to its balanced nutritional composition. Nutritional 
parameters are conventionally assessed using labour and time-intensive strenuous conventional methods for 
germplasm screening. Near-infrared reflectance spectroscopy (NIRS) uses near-infrared sections of the electro-
magnetic spectrum for precise and speedy determination of biochemical parameters for large germplasm. MPLS 
(Modified Partial Least Squares) regression based NIRS prediction models were developed to assess starch, 
resistant starch, amylose, protein, oil, total dietary fibre, phenolics, total soluble sugars, phytic acid for high 
throughput screening of pearl millet germplasm. Mathematical treatments executed by permutation and com-
binations for calibrating the model, where 2nd, 3rd, and 4th derivatives produced the best results. Treatments 
“4,5,4,1” was finalized for protein, oil, resistant starch, total dietary fibre, “3,4,4,1” for phenolics, “2,8,4,1” for 
amylose, “2,4,4,1” for phytic acid, “4,7,4,1” for total soluble sugars and “2,8,4,1” for starch. Treatments with the 
highest 1-Variance ratio, RSQinternal (coefficient of determination) values, lowest SEC(V) (standard error of cross- 
validation), SEP(C) (standard error of performance) were identified for subsequent validation. External valida-
tion determined the prediction accuracy based on RSQexternal, RPD (residual prediction deviation), SD (standard 
deviation), p-value ≥ 0.05 and low SEP(C).   

1. Introduction 

Millets endowed with high nutritional attributes and resilience to 
non-conducive effects of climate change can consequentially address 
nutritional and food security, chiefly in developing countries. Pearl 
millet (Pennisetum glaucum (L.)) R.Br is gradually being acclaimed for 
their superior nutritional properties and pliability to climate change 

(Jukanti et al., 2016). It can also be employed as a viable alternative for 
food diversification due to a balanced nutritional composition of car-
bohydrates (72.20 g/100 g), proteins (11.80 g/100 g), lipids (6.40 
g/100 g), dietary fibres (7.80 g/100 g) and minerals (1.80 g/100 g) 
(Dias-Martins et al., 2018). Traditionally, pedigree information, 
morphological traits, and cytological characters are used to evaluate the 
genetic diversity of pearl millet (Kumar et al., 2020). The available 
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genetic and biochemical diversity preserved in the germplasm directly 
influences the success of crop improvement programs (Kumar et al., 
2016). 

Pearl millet germplasm is bestowed with a wide range of nutritional 
and biochemical traits. The exploitation, assessment, and availability of 
biochemical diversity along with genetic relationships among cultivars 
or accessions could help to develop novel cultivars with superior 
nutritional traits (Ramya et al., 2018). Biochemical parameters like 
starch, resistant starch, amylose, protein, oil, total dietary fibre, phe-
nolics, total soluble sugars and phytic acid primarily determine the 
nutritional diversity and functionality of pearl millet germplasm. These 
parameters are conventionally determined through complex chemical 
methods which are time and labour-intensive and require expensive 
analytical instruments and technical expertise. This makes these 
methods intricate and strenuous to be used for screening a large number 
of samples with accuracy. NIRS ascertains high speed, accurate, 
non-destructive, quantitative and qualitative analysis and screening of 
biochemical parameters in a large germplasm collection for genetic 
analysis and breeding programs (Anne Frank Joe et al., 2020). This 
technique covers electromagnetic radiations from 780 to 2500 nm 
(wave numbers 12500–4000 cm− 1) in NIR regions (Masithoh et al., 
2020), relies on the absorption of infrared radiation, transmitted or re-
flected by a sample due to the vibrations of hydrogen bonds (Bagchi 
et al., 2016). 

Biological samples have numerous multiple overlapping near- 
infrared absorption bands which arise due to a combination of vibra-
tions and overtones of S–H, O–H, N–H and C–H functional groups 
(Hacisalihoglu et al., 2010). These are useful for determining the mo-
lecular interaction between functional groups and deriving chemical 
information about the material (Shi et al., 2019). Spectrum calibration 
involves the process of developing a spectrochemical prediction model. 
The intricate diversity of organic constituents in biological materials 
generates a broad spectrum absorbance peaks and multivariate regres-
sion methods, also called chemometrics, are used to calibrate the NIR 
spectra to these organic constituents (Hacisalihoglu et al., 2010). In 
essence, calibration delineates the biochemical information encom-
passed in the spectral properties of a substance to the physical or 
chemical information indicated through reference laboratory 
techniques. 

Chemometrics is defined as the discipline that connects the evaluated 
values of a chemical system to the state of a system through statistical 
and applied mathematics (Li et al., 2020). Statistics, applied mathe-
matics and other methods are used for identifying the optimal mea-
surement method and test design. This is followed by analyzing and 
processing the measurement data for maximizing the structure, 
composition, and other relevant information on pertinent variables 
(Gendrin et al., 2008). Chemometrics can be classified into two broad 
categories: unsupervised and supervised pattern recognition methods 
(Gad et al., 2013). It includes preprocessing of spectral data (multivar-
iate scatter correction, smoothing, centralization, and derivation), cali-
bration models for quantitative and qualitative analysis. Thus, 
chemometrics is necessary for extracting the relevant chemical infor-
mation from the NIR spectra and construct calibration models for 
associating the spectral features with the parameter of choice. Chemo-
metrics can be successfully used along with NIR for detecting quality and 
nutritional parameters in pearl millet like amino acid, oil, protein, 
starch, moisture contents. Since it is a rapid detection technology of 
specific nutritional trait, it can be used for rapid and high thruput 
screening of diverse pearl millet germplasm and the development of 
varieties. It can also further help in identifying the nutritional quality of 
pearl millet based food products. 

The intrinsic correspondence between the quantity of a biochemical 
parameter and their related absorption spectra determines the analytical 
capacity of NIRS. The authenticity and validity of an NIRS prediction 
model rely on the accuracy with which the relationship is delineated 
through pre-processing the spectral data and multivariate statistical 

analysis. Common pre-treatment steps of data include multiplicative 
scatter corrections (MSC), standard normal variate (SNV) trans-
formations and detrending (Wu et al., 2019). These normalize the 
spectral data by eliminating trivial information (noise), which cannot be 
managed by regression analysis, thereby counterbalancing the scatter 
(particle size), multiplicative (tilt) and additive (baseline shift) effects. 
Precise correlations between biochemical components and spectral data 
are characterized by multivariate regression techniques, which 
commonly include partial least squares regression (PLS), modified par-
tial least squares (MPLS) regression and principal component regression 
(PCR). Predictions made through NIR calibrations are reproducible and 
can even attain the accuracy of the standard reference analytical tech-
niques for individual components. Also, the analysis through NIRS is 
non-destructive, cost-effective and can precisely predict multiple nutri-
tional and biochemical traits simultaneously. 

Although the biochemical constituents like protein in wheat (Shi 
et al., 2019), starch and moisture in cumin (Thangavel & Dhivya, 2019), 
the starch in corn (Jiang & Lu, 2018), amylose, and proximate compo-
sition of rice (Bagchi et al., 2016), olive oil quality (Abu-Khalaf & 
Hmidat, 2020), total dietary fibre in soybean and rice (Bagchi et al., 
2016; Ferreira et al., 2015), phenolics in wheat (Tian et al., 2020), 
resistant starch in pea (Zeng & Chen, 2018), phytic acid in common 
beans (Carbas et al., 2020), starch, fat, protein, and amino acids in 
foxtail millet (Yang et al., 2013) were assessed using NIRS prediction 
models, no reports are available on the evaluation of these parameters in 
pearl millet through this technique. Thus, the present study was un-
dertaken to develop NIRS prediction models using various combinations 
of smoothening, gap, derivatives, and scatter correction techniques for 
nine biochemical traits viz. starch, resistant starch, amylose, protein, oil, 
total dietary fibre, phenolics, total soluble sugars, and phytic acid to 
access the nutritional diversity in pearl millet germplasm. 

2. Materials and methods 

2.1. Materials and sample preparation 

Eighty-seven pearl millet germplasm consisting of released varieties, 
landraces and accessions representing different parts of India were used 
for NIRS calibration. Grains of these germplasms were harvested at 
maturity and further sun-dried to a grain moisture content of 8–10% and 
stored at 4 ◦C. The required quantity of these samples were ground, 
homogenized and sieved through 1 mm sieve on Foss Cyclotec mill. They 
were subsequently subjected to NIRS and wet lab analysis for 
biochemical parameters namely starch, resistant starch, amylose, pro-
tein, oil, total dietary fibre, phenolics, total soluble sugars, and phytic 
acid. To establish an effective calibration of each of the models, the 
sample number in the prediction and reference sets were kept consistent 
for all the models. 

2.2. Quantification of biochemical parameters 

2.2.1. Starch content 
Starch content was determined through the Megazyme assay kit (K- 

TSTA-100 A, Wicklow, Ireland) using amyloglucosidase, thermostable 
α-amylase, and glucose oxidase/peroxidase. The assay was based on a 
spectrophotometric AOAC method 996.11, used by McCleary et al., 
2019. 

2.2.2. Resistant starch 
Resistant starch was determined by Megazyme assay kit (K-RSTAR, 

Wicklow, Ireland) using amyloglucosidase, pancreatic α-amylase, and 
glucose oxidase/peroxidase for the assay-based on a spectrophotometric 
AOAC Method 2002.02, used by McCleary et al., 2020. 

2.2.3. Amylose content 
Amylose content was determined by the iodometric method, where 
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the formation of the iodine-starch complex was detected spectroscopi-
cally (Perez & Juliano, 1978). 

2.2.4. Total protein content 
Protein content was estimated through nitrogen % assessment by 

Foss Tecator 2300 Kjeltec nitrogen auto-analyzer. The % Nitrogen was 
changed to per cent protein by multiplying the result by a conversion 
factor of 5.95. The determination was based on AOAC method 978.02, 
1990 by Sáez-Plaza, Michałowski, Navas, Asuero, & Wybraniec (2013). 

2.2.5. Oil content 
Oil content in dried pearl millet whole grains was analyzed by a non- 

destructive method using Newport NMR analyzer (Model-4000) from 
Oxford Analytical Instruments Ltd. U.K, having a 40 mL coil assembly 
(Shukla et al., 2018). The instrument was calibrated using pure pearl 
millet seed oil which was extracted using soxhlet apparatus. The analysis 
was based on the estimation of proton resonance energy under the 
external magnetic field. The NMR responses (signal/mass) of seed 
samples were matched with the NMR response of pure oil to evaluate the 
oil percentage of the samples. 

2.2.6. Total dietary fibre 
Total dietary fibre was determined using Megazyme assay kit (K- 

TDFR-100 A, Wicklow, Ireland) by gravimetry using thermostable 
α-amylase, purified protease, and amyloglucosidase The determination 
was based on AOAC method 985.29 by McCleary et al., 2015. 

2.2.7. Total soluble sugars 
For total soluble sugars, the spectrophotometric method using 

anthrone was used (Hansen & Møller, 1975). 

2.2.8. Total phenolic content 
Total phenolic content was analyzed using Folin Ciocalteau reagent, 

and absorption at 650 nm and expressed as gallic acid equivalents (Bray 
& Thorpe, 1954). 

2.2.9. Phytic acid content 
Phytic acid was estimated spectrophotometrically using the Mega-

zyme assay kit (K-PHYT, Wicklow, Ireland) with phytase and alkaline 
phosphatase. The determination was based on AOAC method 986 by 
McKie & McCleary, 2016. 

2.3. Method for obtaining the training and validation sets 

A total of 87 pearl millet germplasm including landraces and com-
mercial varieties was assessed for nutritionally relevant biochemical 
parameters through standard biochemical protocols. These samples 
were further subdivided into training (53 samples) and validation set 
(test set) (34 samples). The categorization into training and validation 
set was based on the variability in the biochemical parameters. The 
values were sorted through excel such that both the training and vali-
dation set contains samples with nearly equal variability and almost 
equal minimum and maximum values. 

2.4. Spectroscopic analysis 

The homogenized samples were kept at room temperature (25 ◦C) for 
a period of 6 h to equalize temperature and moisture since these factors 
can influence the absorbance and reflectance of NIR waves. Before 
scanning and after every 30 min, the NIR spectrometer was calibrated 
with scanning a reference tile (100% white). Approximately 5 g of ho-
mogenized flours were scanned on FOSS NIRS 6500 spectrometer 
equipped with Win ISI Project Manager Software version 1.50 to obtain 
the reflectance spectra. The spectra were obtained by loading the ho-
mogenized sample in a circular ring cup with a quartz window of (3.8 cm 
in diameter and 1 cm in thickness). The samples were slightly pressed 

with a circular cardboard backing to assure an even packing without any 
air pockets. Each spectrum represented an average of 32 scans at 
400–2500 nm, and was registered as log (1/R) (R stands for relative 
reflectance) at the increments of 2 nm. All these operations were 
executed at room temperature (25 ◦C). 

2.5. Parameters to measure the accuracy and robustness of the model 

The accuracy and predictive capacity of the models were evaluated 
using global statistical values like RSQ, slope, bias, RPD and SEP (C) 
(Williams et al., 2017). 

RSQinternal/external =

∑(
ycalculated − ypredicted

)2

∑
(ycalculated − ymean)

2 (1)  

Bias (b)=
1
n

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑ (
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)2
√
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)2

n

√

(3)  

1 − VR= 1 −

∑
(xi − xmean)

2

n − 1
(4)  

RPD=
SD

SEP(C)
(5) 

Here. 
RSQinternal/external: Coefficient of determination for calibration (in-

ternal) and validation (external) sample set. 
Ycalculated: The actual evaluated value of the parameter. 
Ypredicted: The predicted value of the parameter through a regression 

line. 
Ymean: Arithmetic mean of y values 
n: Number of spectra 
xi: Value of the one observation 
xmean: Mean value of all observations. 

2.6. Calibration and validation 

After the acquisition of laboratory reference and spectral data, they 
were matched followed by statistical and mathematical procedures. The 
prediction equations were developed through a MPLS regression method 
along with cross-validation. For each biochemical parameter, various 
mathematical algorithms were applied for scatter correction and pre-
processing the spectral data including the Standard Normal Variate 
(SNV) and Detrending (DT). Application of these algorithms and treat-
ments enables smoothening of the spectral data before subjecting to 
regression analysis. This corrects the particle size effect (light scatter) 
and nullifies the variation caused by an alteration in light path length. 
Overlapping absorption bands and baseline shift effects were eliminated 
by calculating the spectral derivatives. Additionally, mathematical 
treatments with four derivatives were tested by trial and error to develop 
the NIRS calibrations for 400–2500 nm spectral region. For example, the 
mathematical treatment denoted as “2,5,4,1” means D = 2, G = 5, S1 = 4 
and S2 = 1, where D represents the order of derivative, G represents the 
gap (data points calculated by the specific derivation), S1 depicts the 
number of data points in the first smoothing and S2 shows the number of 
data points in the second smoothing. Overfitting of the model was pre-
vented by cross-validating the calibration under SNV and detrend scatter 
correction (Wu & Shi, 2004). 

The developed calibrations were assessed by various statistical pa-
rameters. The extent of distribution and variability was evaluated by the 
range and standard deviation (SD). Win ISI Project Manager Software 
version 1.50, was used to automatically calculate the standard error of 
calibration (SEC) and coefficient of determination in internal validation 
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(RSQinternal). SEC indicates the standard error of variation between the 
reference values and values predicted by NIRS calibration models in the 
calibration set. RSQ displays the portion of the variance in reference 
data that can be defined by the variance in predicted data. Models 
having a lower SEC and a higher RSQ are superior to those with higher 
SEC and lower RSQ values. Two comparable parameters, standard error 
of cross-validation (SEC(V)) and 1 minus variance ratio (1-VR) [Eq. (4)] 
were computed as assessors for error and cross-validation coefficient, 
respectively. The components of mathematical processing treatments 
were sought through trial and error so is to decrease the SEC(V) and 
increase the 1-VR during cross-validation. Moreover, these models were 
individually authenticated by an external sample validation set since 
only cross-validation is inadequate for verifying the model. The pre-
diction accuracy of every equation for the external validation was 
assessed based on RSQexternal (coefficient of determination in the 
external validation), bias (the systematic difference between the refer-
ence and predicted value, and thus suggests the correctness of correla-
tion between the two values), standard error of performance (SEP), and 
corrected standard error of performance (SEP(C)). Accuracy of MPLS 
models was evaluated by residual prediction deviation (RPD), which 
was calculated as the ratio of SD of the reference values of the samples in 
the validation set to the SEP corrected for bias (Cozzolino et al., 2006). 

2.7. Statistical analysis and experimental design 

Win ISI III Project Manager software version 3.1 was used to compute 
all the calibrations and predictions through various mathematical 
treatments based on spectral and analyzed data. MS excel and Veusz –a 
scientific plotting package was used to compute the coefficient of 
regression (RSQinternal/external) Eq. (1) for reference vs. predicted values 
for various biochemical parameters. The prediction accuracy of the 
model was evaluated by performing a paired t-test using Jamovi at a 
95% confidence interval. The result of the paired t-test was determined 
in form of a p-value. p-values higher than 0.05 indicates the rejection of 
the null hypothesis that the difference between the means of predicted 
and reference values are considerably different while p-value less than 
0.05 indicates the acceptance of the null hypothesis. 

A completely randomized design (CRD) was used for the experiment 
where the treatments (spectral acquisition and evaluation of nutritional 
traits) were completely random so that each sample unit (homogenous 
pearl millet flour) has the same probability of receiving any single 
treatment. The duplicates of each sample were scanned twice. The 
average spectrum of each sample was used in subsequent data analysis. 
The biochemical traits were evaluated in duplicates and their mean 
values were used for calibration and validation set. 

Fig. 1. a: Distributions of starch, resistant starch, amylose, protein, oil, total dietary fibre, phenolics, total soluble sugars, phytic acid in 87 pearl millet genotypes 
Fig. 1b:A combined plot of the reflectance of all the entire pearl millet germplasm (87 samples) 
Fig. 1c: An average reflectance spectrum of pearl millet homogenized flour with peaks (A) indicate weak absorption bands, which could arise by symmetric stretching 
of (-CH) in methyl groups (-CH3) of biomolecules; (B) indicate O–H stretch first overtone of hydroxyl phenol groups and C–H combinations of aromatic compounds, 
combinations of symmetric stretching of O–H in amylose. O–H stretch and first overtone of starch and cellulose; (C) indicate asymmetric C–O–O stretches the third 
polysaccharide overtone, (C–O) of oils; (D) indicate O–H bending/stretching of polysaccharides, combinations of bending and stretching of O–H in amylose; (E) 
indicate combinations of C–O and N–H stretching, linked to protein, O–H groups of phytic acids, proteins and tannins. O–H bend/C–O stretch combination bands for 
starch. C–O–O stretch and third overtone for starch or cellulose; (F) indicate C–H bending, the second overtone of oils. 
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3. Results and discussion 

3.1. Biochemical parameters and NIRS spectra 

Nutritionally relevant biochemical parameters for 87 diverse pearl 
millet germplasm represented as range, mean value, and the standard 
deviation is presented in Table S1 (Supplementary Document) and 
Fig. 1a. Fig. 1b represents the NIR spectra of homogenized flour of 87 
diverse pearl millet germplasm in the wavelength range of (400–2490 
nm/25000–4016 cm− 1). The average spectra obtained from all the 
tested samples is represented by the spectral line. It is very strenuous to 
visually differentiate between the NIR regions due to the presence of 
highly overlapping and broad combination bands of fundamental vi-
brations (Cozzolino, 2015). It is more difficult for biological materials 
like pearl millet due to the presence of complex structural matrix having 
hydrogen bonding between protein, fatty acids, carbohydrates, and 
other biomolecules. These absorption peaks result from overlapping 
absorptions that fundamentally correspond with combinations and 
overtones of vibrational modes including N–H, O–H and C–H, associated 
with proteins, fatty acids, and carbohydrates, respectively. 

Peak found in the spectral region between 4500 and 5000 cm− 1 can 
be designated to the combinations of C–O and N–H stretching, linked to 
protein contents (Plans et al., 2013). Regions between 4500 and 5000 
cm− 1 can be allocated to O–H groups, present in biological compounds 
like phytic acids, proteins, and tannins, while regions between 6100 and 
6400 cm− 1 are also associated to phytic acid content (Pande & Mishra, 
2015). A relatively wide peak at 7000–6800 cm− 1 can be assigned to 
O–H stretch first overtone of hydroxyl phenol groups and C–H combi-
nations of aromatic compounds. Peak near 5200 cm− 1 was identified 
with O–H bending/stretching of polysaccharides, converging with those 
of water. Peaks found near 4800 cm− 1 could arise from asymmetric 
C–O–O stretches the third polysaccharide overtone (Zhang et al., 2017). 
Sharp absorption bands were noticed at around 5184 cm− 1 representing 
the combinations of bending and stretching of O–H in amylose, also the 
peak near 6835 cm− 1 is concerned with combinations of symmetric 
stretching of O–H in amylose. The wavelength of 8316 cm− 1 causes 
weak absorption bands, which could arise by symmetric stretching of 
(-CH) in methyl groups (-CH3) of biomolecules. Absorption bands near 
8278 cm− 1 were connected to (C–H) stretching, the second overtone 
(-CH2), 5800 cm− 1, related with (C–O) of oils and 4332 cm− 1 is con-
cerned with (C–H) bending, the second overtone of oils (Kaur et al., 
2017). Similar peaks determining these specific functional groups were 
also found by Chen et al., 2013. The mean reflectance spectrum of pearl 
millet flour along with all the major peaks is depicted in Fig. 1c, A, B, C, 
D, E, F. 

Understanding of the relationships between the calibrated trait its 
associated wavelength can become complex due to an overlap between 
the NIR band vibrations associated with different traits. The presence of 
a trait in extremely low concentration can also be another limiting 
factor. These traits usually display low wavelength regression co-
efficients and NIR absorption band number. Our results indicate that the 

prediction accuracy of a model is low when a trait is present in less 
amount with relatively low RSQexternal (phenolics, resistant starch, 
phytic acid and total soluble sugars). The presence of absorption bands 
in multiple spectral regions related to a trait is another challenge that 
results in band vibrations overlap. This is identified to be a major 
limiting factor for the evaluation of biological samples with identical 
chemical bonds or having components with similar absorption regions 
despite having dissimilar structures. For example, O–H bonds having 
wide absorption regions near 2100 nm, screen the alterations in energy 
caused protein amide bond absorption (Egesel & Kahriman, 2012). 
These factors can result in poor prediction capacity of the model for a 
specific trait having multiple wavelengths. 

3.2. Derivation, regression, and preprocessing methods for MPLS models 
(calibration) 

To prevent bias in the sub-set divisions, all the parameters were 
placed in ascending order based on their analyzed biochemical param-
eter. The calibration and validation set were selected to encompass the 
full range of concentrations. After the removal of outliers, all the sam-
ples were divided into an internal calibration set (N = 53), which was 
used to build and train the model and an external validation set (N =
34), which is used to test the robustness and accuracy of the model. 
Regression algorithms based on full-range spectra were used for model 
development. PLS, MPLS and PCR are the most used regression algo-
rithms for NIR model development. PLS has features of both multiple 
regression and PCA (principal component analysis). PLS is similar to 
PCR but uses both spectral information and reference data (physical, 
chemical, etc.) for forming factors used for a suitable purpose. PLS, 
MPLS and PCR were used for the model development, but MPLS was 
found to be more accurate and stable than the standard PLS regression 
algorithm and was thus used in the present study. In MPLS, the NIR 
residuals acquired at each wavelength and after each factor was 
computed and standardized (dividing them by the SD of the residual 
values at each wavelength) before calculating the next factor (Font et al., 
2004). MPLS builds its factors by catching the maximum possible vari-
ation in the spectroscopic data by actively utilizing the reference values 
(physical, chemical, etc.) during spectroscopic data decomposition. This 
method decreases the effect of irrelevant and large spectroscopic vari-
ations in the calibration modelling by counterbalancing the biochemical 
data and spectroscopic information. 

Scattering of light and pathlength variations caused by interactions 
between the light and sample particles usually causes an alteration in the 
absorption levels. This makes the linear calibration and spectral inter-
pretation of NIR reflectance spectra very complex and difficult. Path-
length variations resulting from light scattering generates background 
signals that change with the wavelength causing curvature and baseline 
shift, which changes with the sample. SNV transformation diminishes 
the multiplicative effects of particle size and scattering and also de-
creases the difference between the global signal intensities. SNV works 
by centring each spectrum around zero by subtracting the mean, and 

Table 1 
Model statistics for the calibration set.  

TRAIT N RANGE (%) MATH TREATMENT MEAN RSQinternal SLOPE 1-VR SD SEC (V) 

Protein 53 8.91–18.15 4,5,4,1 12.98 0.933 0.989 0.9032 1.718 0.5472 
Oil 53 5.24–9.99 4,5,4,1 8.26 0.946 1.035 0.6440 0.932 0.5286 
Total dietary fibre 53 7.68–16.18 4,5,4,1 10.88 0.953 0.983 0.8987 1.809 0.5840 
Starch 53 52.49–63.25 2,8,4,1 58.642 0.827 1.000 0.8073 2.493 1.0937 
Amylose 53 19.88–26.50 2,8,4,1 23.38 0.819 1.000 0.7993 1.674 0.7470 
Resistant Starch 53 1.48–3.52 4,5,4,1 2.19 0.762 1.000 0.6905 0.357 0.1981 
Total Soluble Sugars 53 1.62–3.22 4,7,4,1 2.33 0.874 0.975 0.4133 0.323 0.2484 
Phenolics 53 0.04–0.21 3,4,4,1 0.15 0.803 1.000 0.6343 0.033 0.0199 
Phytic Acid 53 0.54–1.43 2,4,4,1 0.85 0.833 1.037 0.7097 0.1990 0.1014 

RSQinternal = coefficient of determination for calibration; SD = standard deviation; SEC(V) = standard error of cross validation; 1-VR = 1 minus variance ratio; 
N=Number of samples; the values of traits are expressed as g/100 g. 
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further dividing the value of each signal by the SD of the complete 
spectrum. The spectral absorption of NIR linearly increases with the 
wavelength for transparent samples, while it curvilinearly increases in 
the case of densely packed sample particles. Detrend method is another 
approach to correct the baseline shift, which is used along with SNV. 
SNV along with Detrend was used for the development of models in the 
present study to circumvent any curvilinearity and noise in the NIRS 
signal baseline. 

The development of calibration by MPLS regression for starch, 
resistant starch, amylose, protein, oil, total dietary fibre, phenolics, total 
soluble sugars and phytic acid in pearl millet homogenized flour is 
summarized in Table 1. Several combinations of mathematical treat-
ments were executed for the development of calibration equations. 

Mathematical treatments “4,5,4,1”, “3,4,4,1”, “2,8,4,1”, “2,4,4,1”, 
“4,7,4,1”, and “2,8,4,1” were finalized for the development of calibra-
tion equations for various parameters based on highest 1-VR and RSQ 
values, lowest SEC(V), and SEP(C) values, and the removal of outliers. 
Derivatives 2, 3, and 4 were used to eliminate the persistent background 
signals and to improve the visual resolution. Global baseline changes 
and background signals are a low-frequency phenomenon, thus de-
rivatives can be elucidated as high-pass filters for clearly determining 
weak peaks that cannot be perceived in the native spectrum. Gaps 5, 4, 
8, and 7 and smoothening (S1-4, S2-1) were used to reduce the noise, 
caused by erratic high-frequency perturbations. As summarized in 
Table 1, the highest coefficient of correlation (RSQinternal) 0.933 was 
obtained for proteins at “4,5,4,1”, 0.803 for phenolics at “3,4,4,1”, 0.819 

Fig. 2. Scatter plot between the reference versus predicted values for (a) starch, (b) resistant starch, (c) amylose, (d) protein, (e) oil, (f) total dietary fibre, (g) 
phenolics (h) total soluble sugars, (i) phytic acid. RSQexternal – coefficient of determination for validation; RPD – residual prediction deviation; SEP(C) – corrected 
standard error of performance, p-it indicates the probability of achieving the test result under the null hypothesis. 
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for amylose at “2,8,4,1”, 0.946 for oils at “4,5,4,1”, 0.762 for resistant 
starch at “4,5,4,1”, 0.953 for total dietary fibre at “4,5,4,1”, 0.833 for 
phytic acid at “2,4,4,1”, 0.874 for total soluble sugars at “4,7,4,1” and 
0.827 for starch at “2,8,4,1”. 

3.4. Validation of the NIR model 

A total of 34 samples were used for validating the developed models. 
Statistical measures like RSQexternal, slope, bias, RPD and SEP (C) [Eq. 
(3)] were used to measure the accuracy and precision of the model. RSQ 
determines the closeness of the data to the fitted line of regression and 
the accuracy with which the regression model fits the actual data values. 
RSQ value of 0.8, indicates that 80% of the data fits the specific 
regression model. A higher RSQ value suggests a better fit for the model. 
Highest RSQ for validation was observed for proteins (0.929), followed 
by total dietary fibre (0.922), starch (0.915), oil (0.909), amylose 
(0.903), total soluble sugars (0.879), resistant starch (0.860), phytic acid 
(0.859) and phenolics (0.821). A similar RSQ of 0.894 for protein and 
0.860 for oil content was observed in pearl millet by Choudhary et al., 
2010. Higher RSQexternal between 0.929 and 0.821 indicates a better 
model fit. In Fig. 2.a, Fig. 2.b, Fig. 2.c, Fig. 2.d, Fig. 2.e, Fig. 2.f, Fig. 2.g, 
Fig. 2.h and Fig. 2.i the regression plot of predicted values versus 
reference values for starch, resistant starch, amylose, protein, oil, total 
dietary fibre, phenolics, total soluble sugars and phytic acid are 
described respectively. The regression plot of predicted values versus 
reference values developed through Win ISI III Project Manager software 
version 3.1 for various traits is represented by Figure S1, S2, S3, S4, S5, 
S6, S7, S8, S9. 

The range for the conventionally calculated values in the calibration 
and values predicted by the model for various biochemical parameters is 
summarized in Table 2. Calibration range for proteins was 8.91–18.15 
g/100 g, while those predicted by the model were 7.96–17.00 g/100 g, 
calibration for phenolics was 0.04–0.21 g/100 g while predicted was 
0.07–0.18 g/100 g, calibration for amylose was 19.88–26.50 g/100 g 

while predicted was 20.24–26.36 g/100 g, calibration for oil was 
5.24–9.99 g/100 g while predicted was 6.12–9.23 g/100 g, calibration 
for resistant starch was 1.49–3.52 g/100 g while predicted was 
1.63–2.82 g/100 g, calibration for total dietary fibre was 7.68–16.18 g/ 
100 g while predicted was 8.46–17.27 g/100 g, calibration for phytic 
acid was 0.54–1.43 g/100 g while predicted was 0.65–1.19 g/100 g, 
calibration for total soluble sugars was 1.62–3.22 g/100 g while pre-
dicted was 1.60–2.82 g/100 g, calibration for starch was 52.49–63.25 g/ 
100 g while predicted was 54.80–61.43 g/100 g. The results indicate a 
good concurrence between the calibration and prediction ranges, 
depicting the prediction accuracy of the model. 

The slope represents the change in predicted values with a one-unit 
change in reference values. While the ideal value of slope should be 1, 
any value close to 1 indicates an accurate model. The values of slope 
ranged from 0.966 to 1.13, where proteins (1.011), phenolics (1.001), 
total dietary fibre (0.966) and phytic acid (0.972) displayed the most 
optimum slope values. Similar slope values of 0.909 for proteins, 0.920 
for starch, and 0.912 for oil was found by Choudhary et al., 2010 in pearl 
millet grains. Bias is an important indicator of similarity between 
reference and predicted values, and in turn determines the model ac-
curacy Eq. (2) (Wu et al., 2019). The ideal value for bias should be equal 
to zero, which means the reference and predicted values are the same. A 
positive value of bias indicates that the model overestimates the eval-
uated parameter. A negative bias value signifies that the model un-
derestimates the evaluated parameter. Oil (− 0.049), resistant starch 
(− 0.037), total soluble sugars (− 0.037), total dietary fibre (− 0.017), 
phytic acid (− 0.005), and amylose (− 0.001) displayed negative bias, 
while phenolics (0.001), proteins (0.039) and starch (0.126) exhibited 
positive bias. This indicates that the models for oil, resistant starch, total 
soluble sugars, total dietary fibre, phytic acid, and amylose slightly 
underestimated these parameters while the models for phenolics, pro-
teins and starch slightly overestimated these parameters. 

RPD considers, both the standard error of prediction and variation in 
the values. This provides a matric to authenticate the model’s validity, 

Table 2 
Model statistics for the validation set.  

TRAIT N % RANGE (Calibration) % RANGE (Predicted) Math Treatment RSQexternal SLOPE BIAS SD SEP (C) RPD 

Protein 34 8.91–18.15 7.96–17.00 4,5,4,1 0.929 1.011 0.039 1.928 0.538 3.58 
Oil 34 5.24–9.99 6.12–9.23 4,5,4,1 0.909 1.076 − 0.049 0.618 0.216 2.86 
Total dietary fibre 34 7.68–16.18 8.46–17.27 4,5,4,1 0.922 0.966 − 0.017 1.843 0.52 3.54 
Starch 34 52.49–63.25 54.80–61.43 2,8,4,1 0.915 1.13 0.126 2.132 0.784 2.71 
Amylose 34 19.88–26.50 20.24–26.36 2,8,4,1 0.903 1.118 − 0.001 1.635 0.629 2.59 
Resistant Starch 34 1.49–3.52 1.63–2.82 4,5,4,1 0.860 1.076 − 0.037 0.331 0.146 2.26 
Total Soluble Sugars 34 1.62–3.22 1.60–2.82 4,7,4,1 0.879 1.109 − 0.037 0.253 0.108 2.34 
Phenolics 34 0.04–0.21 0.07–0.18 3,4,4,1 0.821 1.001 0.001 0.023 0.011 2.09 
Phytic Acid 34 0.54–1.43 0.65–1.19 2,4,4,1 0.859 0.972 − 0.005 0.157 0.062 2.53 

RSQexternal = coefficient of determination for valiation; SD = standard deviation; SEP(C) = standard error of performance; RPD = residual prediction deviation; 
N=Number of samples; the values of traits are expressed as g/100 g. 

Table 3 
Paired sample t-test for between lab and predicted values.  

Pairs Paired Differences t value DF p value 

Mean SD SEM 95% Confidence Interval of the Difference 

Lower Upper 

Protein analytical - Protein predicted 0.039118 0.537452 0.092172 − 0.148408 0.226644 0.424 33 0.674 
Oil analytical - Oil Predicted − 0.049182 0.216102 0.037618 − 0.125808 0.027444 − 1.307 32 0.200 
Total dietary fibre analytical - Total dietary fibre predicted − 0.016471 0.520303 0.089231 − 0.198013 0.165072 − 0.185 33 0.855 
Starch analytical - Starch predicted 0.125813 0.784156 0.138621 − 0.156906 0.408531 0.908 31 0.371 
Amylose analytical - Amylose Predicted − 0.001000 0.629345 0.111253 − 0.227903 0.225903 − 0.009 31 0.993 
Resistant starch analytical - Resistant starch predicted − 0.036645 0.146054 0.026232 − 0.090218 0.016928 − 1.397 30 0.173 
Total soluble sugars analytical - Total soluble sugars predicted − 0.036867 0.108134 0.019742 − 0.077245 0.003511 − 1.867 29 0.072 
Phenolics analytical - Phenolics predicted 0.000647 0.010787 0.001850 − 0.003117 0.004411 0.350 33 0.729 
Phytic acid analytical - Phytic acid predicted − 0.004853 0.061753 0.010591 − 0.026399 0.016694 − 0.458 33 0.650 

This predicts that there is no statistical difference between between predicted and reference values at 95% confidence interval. DF = Degrees of freedom; SD = standard 
deviation; SEM = standard error mean; t = test statistic; p = probability of achieving the test result under null hypothesis. 
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Fig. 3. Overall illustration of the experimental procedure. (A) Pearl millet samples were ground, homogenized and sieved through 1 mm sieve; (B) The spectra were 
obtained by loading the homogenized sample in a circular ring cup with a quartz window (3.8 cm in diameter and 1 cm in thickness); (C) Detection of the reflected 
NIR light by the detector; (D) A typical NIRS spectrum indicating the peaks; (E) A molecule absorbs the incoming IR radiation which causes a change in bond length 
(stretching) and/or (F) bond angle (bending); (G) Wet chemistry analysis of homogenized pearl millet flour for nutritionally relevant biochemical parameters like 
starch, resistant starch, amylose, protein, oil, total dietary fibre, phenolics, total soluble sugars, and phytic acid; (H) Input of wet chemistry data into the NIR 
calibration file; (I) Calibration of model using modified partial least squares regression. This was followed by the application of various mathematical algorithms 
scatter correction and preprocessing the spectral data including the Standard Normal Variate (SNV) and Detrending (DT); (J) Representation of the prediction 
accuracy by scatter plot between the reference and predicted values. 
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which is more precise than SEP(C) and can be easily compared across 
various model validation studies [Eq. (5)] (Prieto et al., 2017). The ideal 
value of RPD should be higher than 1. An RPD value between 1.5 and 2 
can differentiate between high and low values of the response variable. 
Values between 2 and 2.5 indicate that the model can perform rough 
quantitative predictions. Values ≥ 2.5 corresponds to good and those 
with ≥3 shows excellent prediction accuracy of the model (Williams, 
2014). Models for total dietary fibre with RPD (3.54), proteins (3.58) 
displayed excellent prediction capacity. Models for phytic acid (2.53), 
amylose (2.59), starch (2.71) and oil (2.86) exhibited excellent predic-
tion capacity. Models for total soluble sugars (2.34), resistant starch 
(2.26) and phenolics (2.09) can roughly perform good quantitative 
predictions. A similar RPD value of 4.07, with a bias of 0.07 in foxtail 
millet was indicated by Chen et al., 2013. As a general thumb rule for the 
development of robust models, the SEP(C) should not surpass 1.30 times 
the value of SEC. The slope should have a minimum value of 0.90, the 
minimum RSQinternal/external should be 0.60 and the bias should not 
exceed SEC by ±0.6. The models in our study are in agreement with this 
rule. 

As summarized in Table 3, the paired t-test at 95% confidence in-
terval, was used to determine whether the mean of a dependent variable 
is same in the analytical and predicted values for the evaluated 
biochemical parameters. All the models exhibited p-values higher than 
0.05 indicating the reliability and accurate prediction capacity of the 
models. The highest p-value was demonstrated by amylose (0.993), 
followed by total dietary fibre (0.855), phenolics (0.729), proteins 
(0.674), phytic acid (0.650), starch (0.371), oil (0.200), resistant starch 
(0.173) and total soluble sugars (0.072). Fig. 3 graphically illustrates the 
complete experimental procedure along with the major steps. 

From a bromatological standpoint, pearl millet grains are used for 
producing a wide variety of traditional foods including sweets, cous-
cous, flatbreads, porridges, non-alcoholic drinks (marewa, oskikundu, 
mahewu, bushera, kunun Zaki, boza, pito, pombe) and alcoholic beverages 
(merissa, mbeg, chibuku shake, Dogon millet beer or opaque beer) (Dia-
s-Martins et al., 2018). It is well established that every food product 
requires a specific biochemical and nutritional composition. Germplasm 
screened through this technique can be subsequently used for their 
bromatological analysis and establishing their suitability for a specific 
food product. For example, the germplasm with a higher content of TSS 
could be used for synthesizing high glycemic index foods. Germplasm 
with superior contents of starch, amylose, oil, protein, TDF and lower 
phytic acid could be more suitable for food processing industries and 
synthesizing functional foods. These traits determine optimum 
techno-functional properties and nutritional qualities. Germplasm with 
higher content of resistant starch, TDF and low TSS could be used for 
designing low glycemic index foods. Thus this technique can be feasibly 
used for quickly screening large germplasm and establishing their use 
for synthesizing a specific food or nutraceutical product. 

4. Conclusions 

Currently, rapid nondestructive techniques for screening large 
germplasm collections based on nutritionally relevant biochemical at-
tributes are important in the breeding program for the development of 
nutritionally rich varieties and food industries. The present work is the 
first report on the development of effectual MPLS regression models for 
the rapid quantitative determination of starch, resistant starch, amylose, 
protein, oil, total dietary fibre, phenolics, total soluble sugars and phytic 
acid in pearl millet homogenized flour based on NIR spectroscopy and 
chemometrics. A robust calibration model for routine germplasm 
screening requires diverse spectral libraries, reliable validation tech-
niques and consistent testing for evaluating real performance. A thor-
ough understanding of spectral data and chemometrics can ensure the 
reliability of NIRS prediction models for accurately predicting the key 
physical or biochemical components under consideration. Generally, the 
prediction errors are consistent and low with the common values of the 

parameters. The selection of a specific spectral region in many cases can 
significantly enhance the prediction accuracy. 

When compared to conventional analytical methods, these NIR 
models are more efficient, highly eco-friendly, and less labour-intensive 
means to simultaneous assess the required components. This study will 
be of great value for the effective use of NIRS technique for high 
throughput screening of diverse pearl millet germplasm for nutritional 
diversity in a non-destructive manner. Chemometrics is now an 
emerging science for nutritional and biochemical analysis and an 
important tool for enabling the use of NIRS for accessing the intrinsic 
nutritional quality of grains like pearl millet. The vibrational spectros-
copy associated to multivariate methods in the presently developed 
models can serve as a potential analytical tool for plant breeding, food 
industries and inspection agencies for developing, processing, control-
ling and assessing the nutritional quality of pearl millet grains in a cost- 
effective and accurate manner. These models could also enable the 
economical and rapid culling of less desirable genotypes, before their 
expensive and elaborate evaluations for the necessary traits and iden-
tifying more promising genotypes. 
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